欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

必备的中考数学模拟题练习题

编辑: 路逍遥 关键词: 中考复习 来源: 记忆方法网

为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了必备的中考数学模拟题练习题。

A级 基础题

1.下列各组线段(单位:cm)中,是成比例线段的为()

A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3

2.(北京)如图6-4-14,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB=()

A. 60 m B. 40 m C. 30 m D. 20 m

3.(上海)如图6-4-15,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB=()

A. 5∶8 B.3∶8 C.3∶5 D.2∶5

4.若两个相似三角形的面积之比为1∶16,则它们的周长之比为()

A.1∶2 B.1∶4 C.1∶5 D.1∶16

5.(江苏无锡)如图6-4-16,在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积之比等于()

A.12 B.14 C.18 D.116

6.(山东威海)如图6-4-17,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.下列结论错误的是()

A.∠C=2∠A B.BD平分∠ABC

C.S△BCD=S△BOD D.点D为线段AC的黄金分割点

7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________________.

8.(四川雅安)如图6-4-18, 在ABCD,E在AB上,CE,DB交于F,若AE∶BE=4∶3,且BF=2,则DF=________.

9.(江苏泰州)如图6-4-19,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为________.

10.(湖南株洲)如图6-4-20,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于点O.

(1)求证:△COM∽△CBA;

(2)求线段OM的长度.

B级 中等题

11.(山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图6-4-21,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有__________条.12.如图6-4-22,大江的同一侧有A,B两个工厂,它们都有垂直于江边的小路,AD,BE的长度分别为3千米和2千米,且两条小路之间的距离为5千米.现要在江边建一个供水站向A,B两厂送水,欲使供水管路最短,则供水站应建在距E处多远的位置?

13.(湖南株洲)如图6-4-23,在△ABC中,∠C=90°,BC=5米,AC=12米.点M在线段CA上,从C向A运动,速度为1米/秒;同时点N在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.

(1)当t为何值时,∠AMN=∠ANM;

(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

图6-4-23

C级 拔尖题

14.(山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图6-4-24.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF应为多长(材质及其厚度等暂忽略不计)?

图形的相似

1.B 2.B 3.A 4.B 5.D 6.C 7.②③

8.143 解析:AB∥CD△BEF∽△DCFBECD=BFDF,又∵AEBE=43,∴BEAB=37,即BECD=37,则有37=2DF,DF=143.

9.53,-4

10.(1)证明:∵A与C关于直线MN对称,

∴AC⊥MN.∴∠COM=90°.

在矩形ABCD中,∠B=90°,∴∠COM=∠B.

又∵∠ACB=∠MCO,

∴△COM∽△CBA.

(2)解:∵在Rt△CBA中,AB=6,BC=8,

∴AC=10,∴OC=5.

∵△COM∽△CBA,

∴OCCB=OMAB,OM=154.

11.3

12.解:如图55,作出点B关于江边的对称点C,连接AC,则BF+FA=CF+FA=CA.

根据两点之间线段最短,可知当供水站在点F处时,供水管路最短.

∵△ADF∽△CEF,

∴设EF=x,则FD=5-x,

根据相似三角形的性质,得

EFFD=CEAD,即x5-x=23,解得x=2.

故供水站应建在距E点2千米处.

13.解:(1)由题意,得AM=12-t,AN=2t.

∵∠AMN=∠ANM,

∴AM=AN,从而12-t=2t,

解得t=4秒.

∴当t为4秒时,∠AMN=∠ANM.

(2)如图56,过点N作NH⊥AC于点H,∴∠NHA=∠C=90°.

∵∠A是公共角,∴△NHA∽△BCA.

∴ANAB=NHBC,即2t13=NH5,∴NH=10t13.

从而有S△AMN=12(12-t)10t13=-513t2+6013t,

∴当t=6时,S有最大值为18013.

14.解:如图57,过点C作CM∥AB,交EF,AD于N,M,作CP⊥AD,交EF,AD于Q,P.

由题意,得四边形ABCM是平行四边形,

∴EN=AM=BC=20 cm.

∴MD=AD-AM=50-20=30(cm).

由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm.

∵EF∥AD,∴△CNF∽△CMD.

∴NFMD=CQCP,即NF30=3240.

解得NF=24 cm.

∴EF=EN+NF=20+24=44(cm).

答:横梁EF应为44 cm.

以上即是数学网为大家整理的必备的中考数学模拟题练习题,大家还满意吗?希望对大家有所帮助!


本文来自:逍遥右脑记忆 /zhongkao/868371.html

相关阅读:中考备考策略:优等生的中考复习方法
中考英语情景交际答题方法指导
北京中考数学真题解析:多思考 重视应用
中考数学填空题解题注意事项须知
新高一物理学习方法:中考后的暑假如何学习高一物理