欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

中考数学求不规则四边形面积答题技巧

编辑: 路逍遥 关键词: 中考复习 来源: 记忆方法网

一. 作辅助线转化,化不规则四边形为规则图形

1. 作对角线,化四边形为三角形

例1. 如图1所示,凸四边形ABCD的四边AB、BC、CD和DA的长分别是3、4、12和3,

,求四边形ABCD的面积。

图1

解析:考虑到

B为直角,连结AC,则为直角三角形。

所以

例2. 如图2所示,在矩形ABCD中,△AMD的面积为15,△BCN的面积为20,则四边形MFNE的面积为_______________。

图2

解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△AMD面积相等,△EFN与△BCN面积相等。故所求面积为15+20=35。

2. 通过“割补”,化不规则四边形为规则图形

例3. 如图3所示,△ABC中,AB=AC=2,

,D是BC中点,过D作,则四边形AEDF的面积为________________。

图3

解析:过中点D作

,则DG、DH是△ABC的中位线,,即将△DFH割下补在△DEG处,于是所求面积转化为边长为1的正方形AGDH的面积,得1。

二. 引入未知量转化,变几何问题为代数问题

1. 引入字母常量计算面积

例4. 如图4所示,正方形ABCD的面积为1,AE=EB,DH=2AH,CG=3DG,BF=4FC,则四边形EFGH的面积是______________。

图4

解析:考虑到图中线段倍数关系多,设最短线段CF的长为m,则正方形边长为5m,面积为

2. 引入未知量,把求面积转化为解方程(组)

例5. 如图5所示,D、E分别是△ABC的AC、AB边上的点,BD、CE相交于点O,若

,那么_____________。

图5

解:连结OA,设△AOE、△AOD的面积分别为x、y,由“等高的三角形面积比等于底的比”有

所以



本文来自:逍遥右脑记忆 /zhongkao/724641.html

相关阅读:新高一物理学习方法:中考后的暑假如何学习高一物理
中考数学填空题解题注意事项须知
中考英语情景交际答题方法指导
北京中考数学真题解析:多思考 重视应用
中考备考策略:优等生的中考复习方法