一、就运动类型而言
有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
二、就运动对象而言
几何图形中的动点问题,有点动、线动、面动三大类。
三、就图形变化而言
有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
因此,对于中考数学很多人不经会问我们应该多关注什么?怎么样才能拿到高分?其实这些问题很难给出一个正确回答。我们要多去研究题型,关注试题变化,尽量让自己“做一题、会一类”,如动点问题、运动类型问题,在全国各地中考卷出现的概率是非常大的,而且大多以压轴题形式出现。
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。
本文来自:逍遥右脑记忆 /zhongkao/721034.html
相关阅读:北京中考数学真题解析:多思考 重视应用
新高一物理学习方法:中考后的暑假如何学习高一物理
中考数学填空题解题注意事项须知
中考备考策略:优等生的中考复习方法
中考英语情景交际答题方法指导