中考日渐临近,在数学总复习的最后阶段,如何有效应对“容易题”和“综合题”,提高复习的质量和效率呢?针对当前中考复习中普遍存在的倾向性问题,再提出一些看法和建议,供初三毕业班师生参考。
基础题要重理解
在数学考卷中,“容易题”占80%,一般分布在第一、二大题(除第18题)和第三大题第19~23题。在中考复习最后阶段,适当进行“容易题”的操练,对提高中考成绩是有益的。但绝不要陷入“多多益善,盲目傻练”的误区,而要精选一些针对自己薄弱环节的题目进行有目的地练习。
据笔者了解,不少学校在复习中存在忽视过程的倾向,解客观题,即使解其中较难的题时也都只要求写出结果,不要求写出过程,一些同学甚至错了也不去反思错在哪里,这样做,是非常有害的。笔者认为,即使是题解简单的填空题也应当注重理解,反思解题方法,掌握解题过程。解选择题也一样,不要只看选对还是选错,要反问自己选择的依据和理由是什么。
当然,我们要求注重理解,并不意味着不要记忆,记忆水平的考查在历中考命题中均占有一定的比重。所以必要的记忆是必须的,如代数中重要的法则、公式、特殊角的三角比的值以及几何中常见图形的定义、性质和常用的重要定理等都是应当记住的。
在复习的最后阶段,笔者建议同学们适当多做一些考查基础的“容易题”,这样做,虽然花的时间不多,但能及时发现知识缺陷,有利于查漏补缺,亡羊补牢。如果你能真正把这些“容易题”做对、做好,使得分率达到0.9甚至达到0.95以上,那么在中考中取得高分并非难事。
压轴题要重分析
中考要取得高分,攻克最后两道综合题是关键。很多来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程式与图形的综合也是常见的综合方式。这类问题在外省市近的中考试卷中也不乏其例。
动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。在这类问题中,往往把锐角三角比作为几何计算的一种工具。它的重要作用有可能在压轴题中初露头角。总之,应对压轴题,决不能靠猜题、押题。
解压轴题,要注意分析它的逻辑结构,搞清楚它的各个小题之间的关系是“并列”的还是“递进”的,这一点非常重要。一般说来,如果综合题(1)、(2)、(3)小题是并列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,同样(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。如果是“递进”关系,(1)的结论又是解(2)所必要的条件之一,(3)与(2)也是同样的关系。在有些较难的综合题里,这两种关系经常是兼而有之。
说实在,现在流行的“压轴题”,真是难为我们的学生了。从今各区的统考试卷看,有的压轴题的综合度太大,以至命题者自己在“参考答案”中表达解题过程都要用去一页A4纸还多,为了应付中考压轴题,有的题任意拔高了对数学思想方法的考查要求,如有些综合题第(2)、(3)两小题都要分好几种情况进行“分类讨论”,太过分了。
课程标准规定,在初中阶段只要求学生初步领会基本的数学思想方法。所以它在中考中也只能在考查基础知识、基本技能和基本方法中有所渗透和体现而已。希望命题者手下留情,不要以考查数学思想方法为名出难题,也不要再打“擦边球”,搞“深挖洞”了。笔者希望世博之的中考数学卷能够将压轴题的难度从0.37、0.39基础上再下降一点,朝着得分率0.5左右靠拢,千万不要再“双压轴”了。
对一些在区统考的“压轴题”面前打了“败仗”的同学,我劝大家一定要振奋起精神,不要因为这次统考的压轴题不会做或得分过低而垂头丧气,在临考前应当把提高信心和勇气放在首位。笔者建议在总复习最后阶段,不要花过多的精力做大量的综合题,只要精选二十道左右(至多不超过三十道),不同类型、不同结构的综合题进行分析和思考就足够了,如果没有思路,时间又不多,那么看一遍别人的解答也好。
教师对不同的学生,不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,其结果必然是得不偿失。事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上。应当把功夫花在夯实基础、总结归纳、打通思路、总结规律、提高分析能力上。
笔者建议,同学们可以试着把一些中考压轴题分解为若干个“合题”,进行剪裁和组合,或把一些较难的“填空题”,升格为“简答题”,把一些“熟题”变式为“陌生题”让学生进行练习。这样做,花的时间不多,却能取得比较理想的效果,并且还能使学生的思路“活”起来,逐步达到遇到问题会分析,碰到沟坎,会灵活运用已经学过的知识去解决这样的较高水平。
总之,笔者以为在总复习阶段,对大部分学生而言,要有所为又要有所不为,有时放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。当然,我们强调变式,不是乱变花样。其目的是促进对标准形式和基本图形的进一步认识和掌握。
本文来自:逍遥右脑记忆 /zhongkao/585989.html
相关阅读:中考英语情景交际答题方法指导
中考数学填空题解题注意事项须知
北京中考数学真题解析:多思考 重视应用
中考备考策略:优等生的中考复习方法
新高一物理学习方法:中考后的暑假如何学习高一物理