考试要求
(1)空间几何体
① 认识柱、锥、台、球及其简单组合体的结构特征.
② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
③ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
(2)点、直线、平面之间的位置关系
① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
◆公理4:平行于同一条直线的两条直线互相平行
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.
理解以下判定定理:
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明:
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行
◆垂直于同一个平面的两条直线平行
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
复习关注:立体几何试题着重考查空间点、线、面的位置关系的判断及几何体的表面积与体积的计算,关注画图、识图、用图的能力,关注对平行、垂直的探究,关注对条件或结论不完备情景下的开放性问题的探究
本文来自:逍遥右脑记忆 /gaokao/119828.html
相关阅读:高考生高效复习数学方法
准备错题本和好题本
增强记忆力趣闻 大脑爱打盹
高考倒计时30天:数学答题技巧
高考30天物理冲刺技巧有哪些