欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

支招高二数学学习方法:求解无棱二面角大小的三个对策

编辑: 路逍遥 关键词: 高二学习指导 来源: 记忆方法网

支招高二数学学习方法:求解无棱二面角大小的三个对策

【摘要】数学网为大家带来支招高二数学学习方法:求解无棱二面角大小的三个对策,希望大家喜欢下文!

求解无棱二面角的大小思维活、方法多,是高考的热点,同时也是难点问题之一,现从一例高考题出发来系统疏理、归纳.

题目 (2011高考全国卷第16题)已知如右图,点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成二面角的正切值等于____.

对策一 利用空间向量求解

解法1 (利用空间基向量求解)由题意,=+,=+=++.设平面AEF的法向量为n=x+y+z,由n?=0,n?=0,得(x+y+z)?(+)=0,(x+y+z)?(++)=0,把相关量代入化简,得x+z=0,x+y+z=0.取z=3,解得x=y=-1,从而n=

--+3,不难求得|n|=.

又平面ABC的法向量为,故n?=(--+3)?=3,所以cos〈,n〉==,从而sin〈,n〉==,tan〈,n〉=.故平面AEF与平面ABC所成二面角的正切值等于.

点评 面对丰富的几何条件,尤其是每个顶点处的向量都容易表示两两夹角及线段的长度也容易求出,利用空间几何向量求解是最易操作的.虽然对于填空或选择题来说,这样也许会费时费力、小题大做,可这是一种万全之策.

解法2 (利用空间坐标系求解)分别以DA,DC,DD1为x,y,z轴的正半轴,建立空间直角坐标D-xyz,得A(1,0,0),E1,1,,F0,1,,从而=0,1,,=-1,1,.设平面AEF的法向量为m=(x,y,z),由m?=0,m?=0,得y+z=0,-x+y+z=0.取z=3,得m=(-1,-1,3),故|m|=.

又平面ABC的法向量为=(0,0,1),所以由cos〈,m〉==,可得sin〈,m〉==,从而tan〈,m〉=.故平面AEF与平面ABC所成二面角的正切值等于.

点评 用空间直角坐标系求解时,找(作)两两垂直的三线建立适当的空间直角坐标系是关键.

对策二 利用公式cos=求解,其中S是二面角的一个半平面中的一个封闭图形的面积,S是S在另一个半平面上的射影的面积

解法3 由正方体的性质,可知△AEF在平面ABCD上的射影为△ABC.设正方体的棱长为1,在Rt△ACF中,AF===;在Rt△ABE中,AE===.取线段CF的中点为点M,则在Rt△EMF中,求得EF=;取线段AF的中点为点N,则在Rt△ANE中,EN===.

由此得S△AEF=AF?EN==,S△ABC=AB?BC=,得cos==,sin==,从而tan==.故平面AEF与平面ABC所成二面角的正切值等于.

点评 利用面积射影法间接求二面角大小,可避免找二面角的棱及作二面角的平面角双重麻烦,使求解过程更简便.

对策三 利用两个半平面垂线求解

解法4 过点C作CHAF垂足为点H,取线段AF的中点为点N,连结NO,则NOOB,而OB平面ACF,所以NE平面ACF. 从而CHEN.又CHAF,所以CH平面AEF.又CF平面ABCD,从而可得二面角的两个半平面的垂线CH,CF的夹角为FCH,该角和平面AEF与平面ABC所成二面角的大小相等.

又FCH=FAC,所以在Rt△FAC中,tanFAC==.故平面AEF与平面ABC所成二面角的正切值等于.

点评 二面角的两半平面的垂线所成角的大小与二面角的大小相等或互补,这就需要先对二面角的大小作粗略的判断:当二面角的一个半平面上的任意一点在另一个半平面上的射影在二面角的半平面上的,二面角为锐角;当射影在棱上时,二面角为直角;当射影在反向延伸面上时,二面角为钝角.

对策四 找(作)二面角的棱,作出平面角求解

解法5 (利用相交直线找棱)分别延长线段CB,FE交于点P,并连结AP,则AP为平面AEF与平面ABC的交线.因为B1E=2EB,CF=2FC1,所以BECF,从而CB=BP,DBAP.又DBAC,所以APAC.又CC1平面ABC,所以AC1AP,从而FAC为平面AEF与平面ABC所成二面角的平面角.

在Rt△FAC中,AC=,CF=,则tanFAC==.

点评 若二面角的两半平面同时与第三个平面相交,则这两条交线的交点在二面角的棱上.

解法6 (利用平行直线找棱)记ACBD=O,取AF的中点为点N,连结NO,则NOCF,BECF,所以NOBE,所以EN∥BD.又EN?奂平面AEF,设平面AEF平面ABC=l,过点A作AP∥EN,则l∥BD,Pl.以下同解法5.

点评 当二面角的两半平面上有两条互相平行的直线时,由线面平行的性质可知,二面角的棱与这组平行线平行.

解法7 (利用平移平面找棱)分别取线段AF,CF的中点为点N,M,连结NE,EM,NM,则NOCF,BECF,从而可得NOBE,所以EM∥BC,EN∥BD,所以平面ENM∥平面ABC,则平面AEF与平面ABC所成二面角和平面AEF与平面ENM所成二面角大小相等.

由平面ENM∥平面ABC,CC1平面ABC,得CC1平面ENM.又NMEN,NMEN,所以FNEN,从而MNF为平面AEF与平面ECM所成二面角的平面角.在Rt△NMF中,NM=,MF=,则tanMNF

==.

点评 如果两个二面角的两半平面分别平行,则这两个二面角大小相等或互补.

考生们只要加油努力,就一定会有一片蓝天在等着大家。以上就是数学网的编辑为大家准备的支招高二数学学习方法:求解无棱二面角大小的三个对策


本文来自:逍遥右脑记忆 /gaoer/351286.html

相关阅读:高二物理学习技巧
高二语文必修三知识点总结:劝学
2014-2015学年高二化学寒假作业试题练习
高二文科地理如何学
化学高二选修1第4章同步练习:垃圾资源化