欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高二数学学习:高二数学双曲线方程典例分析

编辑: 路逍遥 关键词: 高二学习指导 来源: 记忆方法网

为了帮助学生们更好地学习高中数学,精心为大家搜集整理了“高二数学学习:高二数学双曲线方程典例分析”,希望对大家的数学学习有所帮助!

高二数学学习:高二数学双曲线方程典例分析

双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.

一、求双曲线的标准方程

求双曲线的标准方程 或 (a、b>0),通常是利用双曲线的有关概念及性质再 结合其它知识直接求出a、b或利用待定系数法.

例1 求与双曲线 有公共渐近线,且过点 的双曲线的共轭双曲线方程.

解 令与双曲线 有公共渐近线的双曲线系方程为 ,将点 代入,得 ,∴双曲线方程为 ,由共轭双曲线的定义,可得此双曲线的共轭双曲线方程为 .

评 此例是“求与已知双曲线共渐近线的双曲线方程”类型的题.一般地,与双曲线 有公共渐近线的双曲线的方程可设为 (k?R,且k≠0);有公共焦点的双曲线方程可设为 ,本题用的是待定系数法.

例2 双曲线的实半轴与虚半轴长的积为 ,它的两焦点分别为F1、F2,直线 过F2且与直线F1F2的夹角为 ,且 , 与线段F1F2的垂直平分线的交点为P,线段PF2与双曲线的交点为Q,且 ,建立适当的坐标系,求双曲线的方程.

解 以F1F2的中点为原点,F1、F2所在直线为x轴建立坐标系,则所求双曲线方程为 (a>0,b>0),设F2(c,0),不妨设 的方程为 ,它与y轴交点 ,由定比分点坐标公式,得Q点的坐标为 ,由点Q在双曲线上可得 ,又 ,

∴ , ,∴双曲线方程为 .

评 此例用的是直接法.

二、双曲线定义的应用

1、第一定义的应用

例3 设F1、F2为双曲线 的两个焦点,点P在双曲线上,且满足∠F1PF2=900,求ΔF1PF2的面积.

解 由双曲线的第一定义知, ,两边平方,得 .

∵∠F1PF2=900,∴ ,

∴ ,

∴ .

2、第二定义的应用

例4 已知双曲线 的离心率 ,左、右焦点分别为F1、F2,左准线为l,能否在双曲线左支上找到一点P,使 是 P到l的距离d与 的比例中项?

解 设存在点 ,则 ,由双曲线的第二定义,得 ,

∴ , ,又 ,

即 ,解之,得 ,

∵ ,

∴ , 矛盾,故点P不存在.

评 以上二例若不用双曲线的定义得到焦半径 、

或其关系,解题过程将复杂得多.

三、双曲线性质的应用

例5 设双曲线 ( )的半焦距为c,

直线l过(a,0)、(0,b)两点,已知原点到 的距离为 ,

求双曲线的离心率.

解析 这里求双曲线的离心率即求 ,是个几何问题,怎么把

题目中的条件与之联系起来呢?如图1,

∵ , , ,由面积法知ab= ,考虑到 ,

知 即 ,亦即 ,注意到a<>

四、与双曲线有关的轨迹问题

例6 以动点P为圆心的圆与⊙A: 及⊙B: 都外切,求点P的轨迹方程.

解 设动点P(x,y),动圆半径为r,由题意知 , , .

∴ .∴ , ,据 双曲线的定义知,点P的轨迹是以A、B为焦点的双曲线的右支,方程为 : .

例 7 如图2,从双曲线 上任一点Q引直线 的垂线,垂足为N,求线段QN的中点P的轨迹方程.

解析 因点P随Q的运动而运动,而点Q在已知双曲线上,

故可从寻求 Q点的坐标与P点的坐标之间的关系入手,用转移法达到目的.

设动点P的坐标为 ,点Q的坐标为 ,

则 N点的坐标为 .

∵点 N在直线 上,∴ ……①

又∵PQ垂直于直线 ,∴ ,

即 ……②

联立 ①、②解得 .又∵点N 在双曲线 上,

∴ ,

即 ,化简,得点P的轨迹方程为: .

五、与双曲线有关的综合题

例8 已知双曲线 ,其左右焦点分别为F1、F2,直线l过其右焦点F2且与双曲线 的右支交于A、B两点,求 的最小值.

解 设 , ,( 、 ).由双曲线的第二定义,得

, ,

∴ ,

设直线l的倾角为θ,∵l与双曲线右支交于两点A、B,∴ .

①当 时,l的方程为 ,代入双曲线方程得

.

由韦达定理得: .

∴ .

②当 时,l的方程为 ,∴ ,∴ .

综①②所述,知所求最小值为 .

经过精心的整理,有关“高二数学学习:高二数学双曲线方程典例分析”的内容已经呈现给大家,祝大家学习愉快!


本文来自:逍遥右脑记忆 /gaoer/122721.html

相关阅读:高二语文必修三知识点总结:劝学
2014-2015学年高二化学寒假作业试题练习
高二文科地理如何学
高二物理学习技巧
化学高二选修1第4章同步练习:垃圾资源化