目标1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;
2.能运用法则进行有理数乘法运算;
3.能用乘法解决简单的实际问题.
重点利用运算律简化有理数运算
教学难点利用运算律简化有理数运算
教学过程〖探索1〗
(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?
(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?
(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?
〖探索2〗
(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?
(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?
(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?
〖探索3〗
(1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____;
(5)3×0=_____;(6)-3×0=_____.
〖法则归纳〗
两数相乘,同号得______,异号得_______,并把________相乘.
任何数同0相乘,都得______.
〖旧课复习〗
1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢?
2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?
〖探索4〗
在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.
-0.2的倒数是多少?-7.29的倒数呢? - 的倒数是______;0的倒数________.
3. _____________的两个数互为相反数._______的两个数互为倒数.
若a+b=0,则a、b互为_____数,若ab=1,则a、b互为_____数.
4.计算:(1)(-6)×4=______=____;
(2) - =_________=_____.
本文来自:逍遥右脑记忆 /chuyi/68476.html
相关阅读:生活数学导学案设计
注意全等三角形的构造方法
有理数的加法与减法(4)
角平分线的性质
不等式与不等式组导学案